

BeiGene Investor Presentation Updates from ASH and SABCS

December 16, 2024

TODAY'S SPEAKERS

Lai Wang

Global Head of R&D Mark Lanasa Chief Medical Officer Solid Tumors

Chief Medical Officer Hematology

Mehrdad Mobasher

John V. Oyler Co-Founder, Chairman & CEO Aaron Rosenberg

Chief Financial Officer

Disclosures

Certain statements contained in this presentation and in any accompanying oral presentation, other than statements of fact that are independently verifiable at the date hereof, may constitute forward-looking statements. Examples of such forward-looking statements include statements regarding BeiGene's overall R&D strategy; BeiGene's ability to grow leadership in CLL; the safety profile of BGB-43395; the ability of BeiGene to transform the lives of CLL patients; BeiGene's research, discovery, and pre-clinical and early-stage clinical programs and plans; recent clinical data for BeiGene's product candidates and approvals of its medicines; the conduct of late-stage clinical trials and expected data readouts; the advantages of BTK degradation over non-covalent BTK inhibition; future pricing pressures on our medicines; and the advancement of and anticipated clinical development, regulatory milestones and commercialization of BeiGene's medicines and drug candidates. Actual results may differ materially from those indicated in the forward-looking statements as a result of various important factors, including BeiGene's ability to demonstrate the efficacy and safety of its drug candidates; the clinical results for its drug candidates, which may not support further development or marketing approval; actions of regulatory agencies, which may affect the initiation, timing and progress of clinical trials and marketing approval; BeiGene's ability to achieve commercial success for its marketed medicines and drug candidates, if approved; BeiGene's ability to obtain and maintain protection of intellectual property for its technology and medicines; BeiGene's reliance on third parties to conduct drug development, manufacturing, commercialization, and other services; BeiGene's limited experience in obtaining regulatory approvals and commercializing pharmaceutical products: BeiGene's ability to obtain additional funding for operations and to complete the development of its drug candidates and achieve and maintain profitability; and those risks more fully discussed in the section entitled "Risk Factors" in BeiGene's most recent periodic report filed with the SEC, as well as discussions of potential risks, uncertainties, and other important factors in BeiGene's subsequent filings with the SEC. All information in this presentation is as of the date of this presentation, and BeiGene undertakes no duty to update such information unless required by law.

Some of the clinical data in this presentation relating to BeiGene's investigational drug candidates is from pre-clinical studies or early phase, single-arm clinical trials. When such data or data from later stage trials are presented in relation to other investigational or marketed drug products, the presentation and discussion are not based on head-to-head trials between BeiGene's investigational drug candidates and other products unless specified in the trial protocol. BeiGene is still conducting pre-clinical studies and clinical trials and, as additional patients are enrolled and evaluated, data on BeiGene's investigational drug candidates may change.

This presentation and any accompanying oral presentation contain data and information obtained from third-party studies and internal company analysis of such data and information. BeiGene has not independently verified the data and information obtained from these sources. Forward-looking information obtained from these sources is subject to the same qualifications noted above.

All trademarks, logos and brand names are the property of their respective owners.

AGENDA

December 16, 2024

Welcome, Safe Harbor and Agenda	Dan Maller Head of Investor Relations
Opening Remarks	Lai Wang, Ph.D. Global Head of R&D
SABCS Update and Solid Tumor Programs	Mark Lanasa, M.D., Ph.D. Chief Medical Officer - Solid Tumors
ASH Update and Hematology Programs	Mehrdad Mobasher, M.D., M.P.H Chief Medical Officer - Hematology
Closing Remarks	John V. Oyler Co-Founder, Chairman and CEO
Q&A	BeiGene Team

OPENING REMARKS

Lai Wang, Ph.D. Global Head of R&D

BeiGene R&D Strategy to Transform Patients' Lives

Develop a deep & impactful portfolio

Execute fast-to-PoC for value maximization

BEIGENE **R&D** overall strategy

Initiate combination therapies early to win

Advance only transformative medicines to late-stage development

ENABLED BY:

1,100 researchers covering diverse modalities, advancing science with urgency and agility Maximizing clinical trial efficiency with CRO-free model, powered by automation and AI technologies

Extensive Investment on Innovative Platforms to Support Robust and Sustainable Pipeline Growth

Preclinical pipeline (69 programs)

Transforming Our Pipeline With the Next Wave of Innovation

Significant Portfolio Evolution in Three Years

Heme leadership with 3 cornerstone assets Solid Tumor diversification from IO to disease-focused pipeline POC data readouts for many NMEs in the next 1-2 years

Prior to 2022	2022	2023	2024		2025 and beyond
ZanubrutinibSonrotoclax	• BTK CDAC	• Novel BCL-2i (complementary to sonro)	Lung	GI	New molecules • CDACs • Pispecific ADCs
 Tislelizumab Pamiparib Zanidatamab Ociperlimab TIM-3 mAb LAG-3 mAb 	 SMAC mimetics CEA x 4-1BB 	 CDK4i DGKζi HPK1 (2G) CCR8 mAb 	 EGFR x MET TsAb EGFR CDAC MTA coop PRMT5i B7H3 ADC PanKRASi 	 MUC1 x CD16a BsAb GPC3 x 4-1BB BsAb CEA ADC FGFR2b ADC Other 	 Bispecific ADCs TCR-like TCEs Switch cytokine Cell therapy mRNA etc.
 HPK1 DLL3 x CD3 BsAb STEAP1 x CD3 BsAb 			Breast / Gynecologic B7H4 ADC CDK2i	IL-15 prodrug Heme	Solid Tumor

SABCS UPDATE and SOLID TUMOR PROGRAMS

Mark Lanasa M.D., Ph.D. Chief Medical Officer, Solid Tumors

Our Breast Cancer/Gynecologic Portfolio with CDK4i as a Backbone Across Lines of Therapy and for Combinations

San Antonio Breast Cancer Symposium (SABCS) 2024 Presentations

Topic	Title	Lead author	Key takeaways	Status
BGB-43395-101	First-in-human phase 1a, dose- escalation study of BGB-43395 (CDK4- selective inhibitor) as monotherapy and in combination with fulvestrant or letrozole in patients with metastatic HR+/HER2- breast cancer and other advanced solid tumors	Timothy A. Yap	 Preliminary safety/tolerability profile for BGB-43395 supports continued development with the most commonly reported AEs being diarrhea and nausea No DLTs or AEs leading to discontinuation or death were reported BGB-43395 absorption is rapid (median T_{max}=2 hr); exposure increased ~dose proportionately 	Poster Number: P4-10-20 Session Date and Time: Thursday Dec 12, 2024 5:30 - 7:00 PM CDT
Preclinical (CDK4i)	Preclinical characterization of BGB-43395, a potential best-in-class CDK4 selective inhibitor with potent pharmacodynamic and anti-tumor activity in HR+HER2- breast cancer Models	Hengrui Zhu	 BGB-43395, a highly potent CDK4-selective kinase inhibitor that translates into a desirable toxicity profile, notably minimizing neutropenia and GI toxicity BGB-43395 exhibits superior kinase inhibition against CDK4 compared with palbociclib, ribociclib and abemaciclib as well as investigational CDK4 inhibitor PF-07220060 	Poster Number: P4-10-06 Session Date and Time: Thursday Dec 12, 2024 5:30 - 7:00 PM CDT
BGB-43395-102 (TiP)	Trial in progress: First-in-human phase 1a/1b, dose-escalation/expansion study of BGB-43395 (CDK4 selective inhibitor) as monotherapy or combination therapy in Chinese patients with metastatic HR+/HER2- breast cancer and other advanced solid tumors	Jian Zhang	TiP abstract describing the CDK4-102, FiH dose-escalation/ expansion trial in patients from China with metastatic HR+/HER2- BC and other solid tumors	Poster Number: P4-08-26 Session Date and Time: Thursday Dec 12, 2024 5:30 - 7:00 PM CDT
BG-68501-101 (TiP)	Trial in progress: A first-in-human phase 1a/b, dose-escalation/expansion study of BG-68501/ETX-197 (CDK2 inhibitor) as monotherapy or in combination for patients with HR+/HER2- breast cancer and other advanced solid tumors	Minal Barve	TiP abstract describing the CDK2-101, FiH dose-escalation/ expansion trial in patients with HR+/HER2- BC and other solid tumors	Poster Number: P4-08-20 Session Date and Time: Thursday Dec 12, 2024 5:30 - 7:00 PM CDT
ETX-197/ BG-68501	ETX-197/BG-68501, a potential best-in- class potent, selective, oral, small molecule CDK2 inhibitor, has anti-tumor activity in cancer models with Cyclin E amplification or deficiency in the Retinoblastoma 1 gene	Daliya Banerjee	 Abstract details the discovery and preclinical characterization of ETX-197, a highly potent and selective small molecule inhibitor of CDK2 activity ETX-197 is in a first-in-human (FIH), Phase 1a/1b study to assess the safety, tolerability, pharmacokinetics (PK), pharmacodynamics, and preliminary antitumor activity in patients with advanced, nonresectable, or metastatic solid tumors (NCT06257264) 	Poster Number: P4-12-29* Session Date and Time: Thursday Dec 12, 2024 5:30 - 7:00 PM CDT

Poster number: P4-10-20 Presented at: San Antonio Breast Cancer Symposium

First-in-human phase 1a, dose-escalation study of BGB-43395 (CDK4-selective inhibitor) as monotherapy and in combination with fulvestrant or letrozole in patients with metastatic HR+/HER2breast cancer and other advanced solid tumors

Timothy A. Yap,¹ Gerald Falchook,² Jennifer Man,³ Dhanusha Sabanathan,⁴ Robert Wesolowski,⁵ Ildefonso Rodriguez-Rivera,⁶ Hui Gan,⁷ Gilbert Y. Wong,⁸ Marion Carrigan,⁸ Erqian Yu,⁹ Hao Zheng,⁸ Shom Goel¹⁰

¹The University of Texas MD Anderson Cancer Center, Houston, TX, USA; ²Sarah Cannon Research Institute (SCRI) at Health One, Denver, CO, USA; ³Blacktown Cancer and Haematology Centre, Blacktown, NSW, Australia; ⁴Macquarie University, Macquarie Park, NSW, Australia; ⁵The James Cancer Hospital and Solove Research Institute, Columbus, Ohio, USA; ⁶NEXT Oncology, San Antonio, TX, USA; ⁷Austin Hospital, Heidelberg, VIC, Australia; ⁸BeiGene USA, Inc, San Mateo, CA, USA; ⁹Clinical Pharmacology, BeiGene (Shanghai) Co., Ltd. Shanghai, China; ¹⁰Peter MacCallum Cancer Centre, Melbourne, VIC, Australia

Poster number: P4-10-20 Presented at: San Antonio Breast Cancer Symposium Date: December 12, 2024

CDK4i (BGB-43395) – Dose Escalation in Monotherapy and in Combination with ET in Both 1L and 2L+ Breast Cancer Patients

Study endpoints			
Dose escalation	n (Phase 1a)		
Primary	Secondary	Exploratory	
 Safety and tolerability 	 ORR, DOR and TTR 	 PFS, DCR and CBR 	
MTD and MADRDFF	• PK	 PD biomarkers 	

Study endpoints

Dose expansion (Phase 1b)				
Primary	Secondary	Exploratory		
• ORR	 DOR, TTR, DCR, CBR and PFS 	 OS PD biomarkers 		
	 Safety 			
	• PK			

BeiGene 13

- BC Breast Cancer
- OC Ovarian Cancer
- EC Endometrial Cancer
- * Data for dose levels 1-5 are presented
- † Data for dose levels 2-4 are presented

CDK4i (BGB-43395) Shows Expected PK Characteristics Across Dose Levels Tested

Dose level 1
 Dose level 2
 Dose level 3
 Dose level 4
 Dose level 5

- Rapid absorption after oral administration with median T_{max} occurring ~after 2 hours
- Half-life approximately 13 hours
- Exposures increased approximately dose proportionately
- Exposures were not impacted by co-administration with either fulvestrant or letrozole
- No significant differences in exposure observed in different regions or ethnic groups

Only the PK data of patients who received once daily dosing in Part A are shown

PK data have fewer dose levels than the study schema because not all dose levels have been explored yet.

CDK4i (BGB-43395) Safety as Single Agent and in Combination with Endocrine Therapy, All Dose Levels Safe and Tolerable

	Part A (BGB-4339	5 monothera	apy)		Part B BGB-4339	5 +	Part C			
	All (n=33)		BC (n=6)		fulvestran (n=17)	t	BGB-4339 (n=15)	5 + letrozole	Total (N=65)	
Tolerability Summary										
Any AE	33 (100.0)		6 (100.0)		15 (88.2)		13 (86.7)		61 (93.8)	
Grade ≥3 AEs	10 (30.3)		2 (33.3)		4 (23.5)		1 (6.7)		15 (23.1)	
Treatment-related AE	31 (93.9)		6 (100.0)		14 (82.4)		12 (80.0)		57 (87.7)	
Grade ≥3 treatment-related AEs	9 (27.3)		1 (16.7)		1 (5.9)		0		10 (15.4)	
Any SAEs	3 (9.1)		1 (16.7)		2 (11.8)		1 (6.7)		6 (9.2)	
Fatal SAEs	1 (3.0)*		0		0		0		1 (1.5)	
Leading to study treatment discontinuation	2 (6.1)		1 (16.7)		0		1 (6.7)		3 (4.6)	
Treatment-Related† AEs Occurring in >10% of Pts	All grades	Grade ≥3	All grade	Grade ≥3	All grade	Grade ≥3	All grade	Grade ≥3	All grade	Grade ≥3
Diarrhea	24 (72.7)	2 (6.1)	2 (33.3)	0	9 (52.9)	0	9 (60.0)	0	42 (64.6)	2 (3.1)
Nausea	18 (54.5)	1 (3.0)	3 (50.0)	0	4 (23.5)	0	5 (33.3)	0	27 (41.5)	1 (1.5)
Vomiting	9 (27.3)	1 (3.0)	0	0	2 (11.8)	0	1 (6.7)	0	12 (18.5)	1 (1.5)
Neutrophil count decreased	4 (12.1)	2 (6.1)	1 (16.7)	0	5 (29.4)	0	1 (6.7)	0	10 (15.4)	2 (3.1)
Decreased appetite	6 (18.2)	0	0	0	1 (5.9)	0	1 (6.7)	0	8 (12.3)	0
Fatigue	4 (12.1)	0	2 (33.3)	0	2 (11.8)	0	2 (13.3)	0	8 (12.3)	0

DCO: 23Sep24

AEs per NCI-CTCAE v5.0 by type, frequency, severity, timing, seriousness and relationship to drug. *One patient had treatment-emergent sepsis (not treatment-related) which led to death.

AE, adverse event; BC, breast cancer; SAE, treatment-emergent serious adverse event.

Data Update: Substantial PD Activity in Breast Cancer at Dose Levels A and B

TK1 activity change after BGB-43395-based treatment (BC-only)

Pronounced TK1 reduction observed at Dose Level B (≥80% inhibition)

- For monotherapy cohort, Dose Level B showed stronger and more sustained TK1 inhibition as compared with Dose Level A
- For fulvestrant combo cohorts, Dose Level B and Dose Level A also show dose dependent PD effect and are in the expected clinically efficacious range based on biomarker effect.
- Dose Level A and Dose Level B in combination with fulvestrant achieved a similar level of TK1 inhibition as RP2D of atirmociclib (PF-07220060) + ET

TK1 – Thymidine Kinase 1

BC – Breast Cancer

ET – Endocrine Therapy

BGB-43395 is a Novel, Potential Best-in-class, CDK4 Inhibitor

Preclinical differentiation and accelerated development to maximize patient impact

- BGB-43395 is a potent CDK4 inhibitor with strong selectivity for CDK4 over CDK6 and clean kinome profile
- In the first year of clinical investigation, over 120 patients have been enrolled, substantially closing the development gap with atirmociclib
- Clinical investigation has revealed low rates of hematologic toxicity, encouraging PD data, as well as preliminary clinical efficacy. Additional study data updates will be reported at a future medical conference in 2025
- Planning is underway for Phase 3 studies in 1L and 2L HR+ breast cancer

Deep and Differentiated Disease Franchises Established in 2024

Building Momentum in Breast, Lung and GI into 2025

ADC (DualityBio partnership), MAT2A (CSPC Zhongqi Pharmaceutical Technology); * In the clinic

ASH UPDATE and HEMATOLOGY PROGRAMS

Chief Medical Officer, Hematology

Transforming Lives of All CLL Patients and Other Hematological Cancer Patients with Our Current and Future Medicines

MZL – Marginal Zone Lymphoma

FL- Follicular Lymphoma

MM - Multiple Myeloma

20

Success of Brukinsa and BeiGene's Wholly-Owned Innovative Pipeline Enables Impactful Growth in Our CLL Leadership

CLL prevalence and market opportunity remains significant and growing

2023 Global CLL revenue: BTKi and BCL2i¹

R/R CLL 1L CLL

CLL - Chronic Lymphocytic Leukemia RR – Relapsed Refractory ¹ Source: IQVIA Analytics: split of 1L and R/R CLL and the actual revenues from FY 2023 company filings.

BeiGene has a robust pipeline to develop optimal therapies for all impacted by CLL

BRUKINSA is a **proven** and best-in-class BTKi for 1L and R/R settings

- Only BTKi to demonstrate superiority vs. ibrutinib, showing clear differentiation
- Long-term follow-up shows highest CRs sustained efficacy regardless of risk status and patient characteristics

Development of BRUKINSA + sonrotoclax in 1L CLL can provide a **best-in-disease fixed-duration combination**, delivering exceptional efficacy, safety, and convenience

The BTK degrader (BGB-16673) can **disrupt the CLL treatment paradigm** as monotherapy or combinations

ASH 2024 BeiGene's Presentations 21 abstracts presented

- CLL Switch (Ontada)
 - CDAC in Preclinical MCL Models

BTKi: Bruton tyrosine kinase inhibitor; CART: chimeric antigen receptor T-cell; CDAC: chimeric degradation activation compounds; CLL: chronic lymphocytic leukemia; DI: dose interruptions; FL: follicular lymphoma; GMI: growth modulation index; HEOR: health economics and outcome research; iPSC: induced pluripotent stem cell; LTE: long term extension; LTFU: long term follow up; MCL: mantle cell lymphoma; NHL: non-Hodgkin's lymphoma; RWE: real world evidence; S+Z: sonrotoclax+zanubrutinib; TN: treatment naïve; WM: Waldenstrom's macroglobulinemia

BRUKINSA (zanubrutinib)

Sonrotoclax

BGB-16673 (BTK CDAC)

BRUKINSA, a Next Generation BTKi with Broadest Label Globally and Leader in New Patient Starts in CLL

Specific, potent and sustained BTK inhibition	Consistently demonstrated superior efficacy	Distinct safety advantages	BTKi with the broadest label	Dosing optimized for efficacy, safety, and convenience
Designed to succeed where competitors have not	Only BTKi to demonstrate PFS superiority to ibrutinib in R/R CLL/SLL	Lowest rate of atrial fibrillation across multiple studies in an independent meta-analysis ⁵	Only BTKi approved in 5 B-cell malignancies with deep and durable responses:	Only BTKi with QD and BID dosing allowing adjustment flexibility
Greater BTK specificity and increased potency ¹	in all patient segments, including high-risk (17p / <i>TP53</i>) ²	Lower rate of infections vs acalabrutinib ⁶	 CLL/SLL, WM. MCL, MZL EL only PTKi approved 	Only BTKi without dose reductions in severe hepatic impairment
Bioavailability that provides near complete target occupancy in all disease relevant tissues	Sustained PFS superiority in both TN and R/R CLL in all patient segments regardless of risk and patient characteristics at extended follow-up ^{3,4}	Lower rates of AEs that limit activities of daily living vs acalabrutinib, including headache and GI toxicities ⁶	Four Ph 3 studies to maximize lifecycle: TN MCL (MANGROVE) 2L FL and MZL (MAHOGANY) TN CLL FTD (CELESTIAL-TNCLL)	New tablet formulation expected in 2025 with reduced pill number and size
RR – Relapsed Refractory	¹ Guo et al. J Me	d Chem 2019	RR MCL (CELESTIAL- RRMCL)	zanubrutinib

- CLL/SLL Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma PFS – Progression Free Survival TN – Treatment Naïve AE – Adverse Events WM - Waldenström's Macroglobulinemia MCL - Mantle Cell Lymphoma
- MZL Marginal Zone Lymphoma
- FL Follicular Lymphoma
- FTD Fixed Treatment Duration

¹ Guo et al. J Med Chem 2019
² Brown et al. Blood 2024
³ Brown et al. ASH 2023
⁴ Shadman et al. ICHM 2024
⁵ Hwang et al. EHA 2023
⁶ Brown et al. Haematologica 2024

2024 ASH BeiGene Key Presentations Zanubrutinib (Clinical)

Торіс	Title	First author / significance	Status
SEQUOIA Long Term Follow-up	Sustained Superiority of Zanubrutinib vs Bendamustine + Rituximab in Treatment-Naive Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma (TN CLL): 5- Year Follow-Up of Cohort 1 from the SEQUOIA Study	Mazyar Shadman PFS superiority, regardless of risk status, is maintained with BRUKINSA vs BR with an extended median follow-up of 5 years. High CR rates were seen. BRUKINSA was well tolerated with low rate of AEs including afib/flutter, infections.	Poster 3249
Long Term Extension (LTE1) Study - CLL	Deep and sustained responses in patients with CLL treated with zanubrutinib or zanubrutinib + obinutuzumab in phase 1/2 AU-003 and phase 1b GA-101 studies: A report from the zanubrutinib extension study	Constantine S. Tam With longer follow up (now median 6.5y) unprecedented CR rates for a BTKi were observed with zanubrutinib +/- obinutuzumab and impressive sustained PFS achieved in CLL. Tolerability and safety profile of zanubrutinib +/- obinutuzumab remained favorable	Poster 3255
BOVen 5-Year Data IIS	Multicenter Phase II Trial of Zanubrutinib, Obinutuzumab, and Venetoclax (BOVen) in Treatment-Naïve Chronic Lymphocytic Leukemia: 5- Year Follow up, Retreatment Outcomes, and Impact of MRD Kinetics (ΔMRD400)	Jacob D. Soumerai Five-year follow up of the BOVen study evaluating time limited uMRD guided treatment with ZVO in all comer TN CLL demonstrates high rates of uMRD4 with median 10 cycles (8-12) before stopping treatment BOVen was well tolerated.	Oral 1867

R/R CLL - BRUKINSA Demonstrates Sustained Superiority Over Ibrutinib in ALPINE H2H Study with 42.5 Months Follow-up

PFS superiority sustained in ALPINE survival probability 90 65.4% 80 9.9.70. 60.0% 70 60 50 54.4% Progression-free (48.6, 59.8)40 49.6% 30 (43.7,55.2) 20 Zanubrutinib Ibrutinib Censored 42 45 12 15 27 30 33 39 48 51 54 57 60 63 0 6 9 18 21 24 36 Months from randomization 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 0 3 6 327 315 302 295 287 272 258 247 242 236 218 210 189 151 128 109 104 43 19 2 325 305 293 273 258 241 228 213 200 194 183 173 148 116 101 77 74 30 10 2 No. subjects at risk

	Zanubrutinib	Ibrutinib
# of events (%)	150 (45.9%)	177 (54.5%)
HR (95% CI):	0.68 (0.54	, 0.84)
nominal <i>p</i> -value	0.000)5

Brown et al., Blood, 2024

S blood

Superiority with COVID-19 adjustment

	Zanubrutinib	Ibrutinib
# of events (%)	134 (41.0%)	160 (49.2%)
HR (95% CI):	0.66 (0.52	, 0.84)
nominal <i>p</i> -value	0.000)5

R/R CLL - Sustained Superiority and Risk Reduction in *TP53*/Del17p Population, Clear Evidence of Differentiation

	Zanubrutinib	Ibrutinib
# of events (%)	36 (48.0%)	51 (68.0%)
HR (95% CI):	0.51 (0.33	s, 0.78)
nominal <i>p</i> -value	0.001	19

	Zanubrutinib	Ibrutinib	
# of events (%)	33 (44)	49 (65.3)	
HR (95% CI):	0.48 (0.31, 0.75)		
nominal <i>p</i> -value	0.0011		

Brown et al., Blood, 2024

R/R CLL – Cross Trial Comparison of ELEVATE-RR Del17p Population and ALPINE *TP53*/Del17p Population

nominal *p*-value

Byrd et al, JCO, 2021 *42-month PFS estimated from JCO paper CI, Confidence interval

0.0011

American Society of Hematology Helping hematologists conquer blood diseases worldwide

Sustained Superiority of Zanubrutinib vs Bendamustine + Rituximab in Treatment-Naive Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma: 5-Year Follow-Up of Cohort 1 From the SEQUOIA Study

Mazyar Shadman,^{1,2} Talha Munir,³ Tadeusz Robak,⁴ Jennifer R. Brown,⁵ Brad S. Kahl,⁶ Paolo Ghia,^{7,8} Tian Tian,⁹ Andy Szeto,⁹ Roman Korolkiewicz,⁹ Constantine S. Tam,¹⁰ Wojciech Jurczak¹¹

¹Fred Hutchinson Cancer Center, Seattle, WA, USA; ²University of Washington, Seattle, WA, USA; ³Leeds Teaching Hospitals NHS Trust, Leeds, UK; ⁴Copernicus Memorial Hospital, Medical University of Łódź, Łódź, Poland; ⁵Dana-Farber Cancer Institute, Boston, MA, USA; ⁶Siteman Cancer Center, Washington University School of Medicine, St Louis, MO, USA; ⁷Università Vita-Salute San Raffaele, Milano, Italy; ⁸IRCCS Ospedale San Raffaele, Milano, Italy; ⁹BeiGene USA, Inc, San Mateo, CA, USA; ¹⁰Alfred Hospital and Monash University, Melbourne, VIC, Australia; ¹¹Maria Sklodowska-Curie National Research Institute of Oncology, Kraków, Poland

TN CLL (unfit*) - Sustained PFS Benefit Demonstrated with Zanubrutinib with Follow-up of 61.2 Months of SEQUOIA

* In SEQUOIA, patients with TN CLL were 65 years or older or 18-64 years of age with one of the following factors:

CIRS score >6, creatinine clearance <70 mL/min, history of previous serious infection or multiple infections in the past 2 years

Presented at the 2024 66th ASH Annual Meeting and Exposition

TN CLL (unfit) – Hypertension and Atrial Fibrillation/Flutter Rates Were Low

Exposure-adjusted Incidence Rate^a for Select AEIs^b

	Arm A: zanubrutinib (n=240)	Arm B: BR (n=227)
Atrial fibrillation and flutter	0.13	0.09
Hemorrhage	1.66	0.35
Major hemorrhage	0.18	0.05
Hypertension	0.50	0.37

^a EAIR was calculated as the number of patients with an event in each TEAE category divided by the total time from the first dose date to the first event date or the exposure time if no event occurred.

^bAdverse events of interest for zanubrutinib are defined in Tam et al, 2022.¹

1. Tam CS, et al. Lancet Oncol. 2022;23:1031-1043.

Presented at the 2024 66th ASH Annual Meeting and Exposition

Shadman et al., JCO, 2024. DOI:https://doi.org/10.1200/JCO-24-02265

31

TN CLL - Zanubrutinib Authors' Conclusions:

Sustained PFS benefit regardless of risk status and low rates of AEs with 5-year follow-up

- With a median study follow-up of 61.2 months, zanubrutinib has been shown to offer a sustained PFS benefit vs BR in treatment naive patients with CLL/SLL, with a **71% reduction in risk** of progression or death
- Superior PFS benefit was consistent irrespective of IGHV status. Similarly, in prior reports, data from SEQUOIA cohort 2 in patients with del(17p)/TP53 mutation showed an estimated 42-month rate of 79.4% were similar to PFS rates in those without this high-risk feature.¹ This suggests that treatment with zanubrutinib may overcome negative prognostic factors such as IGHV and del(17p)/TP53
- High CR/CRi rates in the zanubrutinib arm, 20.7% (95% CI: 15.8, 26.4), that increased over the course of the study are the highest reported with BTK inhibitor monotherapy
- Zanubrutinib was well tolerated over this extended treatment period, with low rates of atrial fibrillation/flutter, infections, and AEs that limit daily living activities such as GI toxicities
- The cumulative incidence of hypertension and atrial fibrillation/flutter remain low and are comparable to the background incidence in this patient population, which was observed in the BR arm
- The results of this extended follow-up in the SEQUOIA study support the use of zanubrutinib as a standard first-line treatment option for patients regardless of disease risk status

1. Munir T, et al. EHA 2023. Abstract P639.

Presented at the 2024 66th ASH Annual Meeting and Exposition

Shadman et al., JCO, 2024. DOI:https://doi.org/10.1200/JCO-24-02265

32

American Society of Hematology Helping hematologists conquer blood diseases worldwide

Deep and Sustained Responses in Patients With CLL Treated With Zanubrutinib or Zanubrutinib + Obinutuzumab in Phase 1/2 AU-003 and Phase 1b GA-101 Studies: A Report From the Zanubrutinib Extension Study

Constantine S. Tam,¹ Stephen S. Opat,² Eileen Merriman,³ Jan A. Burger,⁴ Emma Verner,^{5,6} Paula Marlton,⁷ David J. Gottlieb,⁸ Ian W. Flinn,⁹ Sumit Madan,¹⁰ Matthew Ku,¹¹ Radha Prathikanti,¹² Heather Allewelt,¹² Tian Tian,¹² Remus Vezan,¹² Gavin Cull¹³

¹Alfred Hospital and Monash University, Melbourne, VIC, Australia; ²Lymphoma Research Group, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia; ³North Shore Hospital, Auckland, New Zealand; ⁴The University of Texas MD Anderson Cancer Center, Houston, TX, USA; ⁵Concord Repatriation General Hospital, Concord, NSW, Australia; ⁶University of Sydney, Sydney, NSW, Australia; ⁷Princess Alexandra Hospital and University of Queensland, Brisbane, QLD, Australia; ⁸8Department of Haematology, Westmead Hospital Sydney, Sydney, NSW, Australia; ⁹Tennessee Oncology/OneOncology, Nashville, TN, USA; ¹⁰Banner MD Anderson Cancer Center at Banner Gateway Medical Center, Gilbert, AZ, USA; ¹¹St Vincent's Hospital, Fitzroy, VIC, Australia; ¹²BeiGene USA, Inc, San Mateo, CA, USA; ¹³Sir Charles Gairdner Hospital, Nedlands, WA, Australia

TN and R/R CLL/SLL - Zanubrutinib and ZO Author's Conclusions:

Unprecedented CR/CRi rates and impressive PFS in CLL/SLL patients

- In patients with CLL/SLL, treatment with zanubrutinib in AU-003 and with ZO in GA-101 led to high rates of overall and complete responses, with unprecedented CR/CRi rates for BTKi treatment in TN patients
- With the longest follow-up to date (median 6.5 years), treatment with zanubrutinib or ZO resulted in durable responses and impressive PFS in patients with both TN and R/R CLL/SLL
- The tolerability/safety profile of zanubrutinib, alone and in combination with ZO, remained favorable, with decreasing prevalence of most TEAEs of interest from the initial treatment period

Multicenter Phase II Trial of Zanubrutinib, Obinutuzumab, and Venetoclax (BOVen) in Treatment-Naïve Chronic Lymphocytic Leukemia: 5-Year Follow up, Retreatment Outcomes, and Impact of MRD Kinetics (Δ MRD400)

Jacob D. Soumerai¹, Ahmet Dogan², Venkatraman Seshan², Kelsey Flaherty², Natalie Slupe², Jason Carter², Ephraim Hochberg¹, Jeffrey A. Barnes¹, Jeremy S. Abramson¹, Audrey M. Hamilton², Ariela Noy², Colette N. Owens², M. Lia Palomba², Anita Kumar², Lindsey E. Roeker², Meghan Thompson², Ronald W. Takvorian¹, Zachary Epstein-Peterson², Mark Geyer², Gilles Salles², Robert Stuver², Philip Caron², Prioty Islam², Tamanna Haque², Paola Ghione², Raphael Steiner², Pallawi Torka², Kevin David², Jennifer Lue², Paul Hamlin², Alison Moskowitz², Lorenzo Falchi², J. Erika Haydu¹, P. Connor Johnson¹, Joanna Mi², Jessica Pendleton², Alyssa Labarre², Rosalba Martignetti¹, Sean Plummer¹, Maria Chabowska², Walter Ramos-Amador², Neena Mahajan², Morgan Choma², Clare Grieve², Rayna Garcia¹, Hailey Kelly¹, Ella Mallinger¹, James O'Grady¹, Bernadette Beatty¹, Michelle Adams¹, Athina Apazidis¹, Aileen Cohen³, Mina Shahkarami⁴, Allison Jacob⁵, Omar Abdel-Wahab², and Andrew D. Zelenetz²

- ¹ Massachusetts General Hospital Cancer Center, Center for Lymphoma, Boston, MA, United States of America
- ² Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
- ³ Beigene Ltd., San Mateo, CA, United States of America
- ⁴ Genentech Inc., South San Francisco, CA, United States of America
- ⁵ Adaptive Biotechnologies Corp., Seattle, WA, United States of America

Presented at the 2024 66th ASH Annual Meeting and Exposition

TN CLL - Adverse Events Occurring with BOVen Regimen (all-cause)

Any grade AEs in ≥15% pts	Grade 1-2 (%)	Grade 3 (%)	Grade 4 (%)	Grade ≥3 AEs in ≥2 pts	Grade 3 (%)	Grade 4 (%)	Grade 5 (%)	
Platelet count decreased	27 (52%)	4 (8%)		Neutrophil count decreased	4 (8%)	10 (19%)	-	
Fatigue	30 (58%)	1 (2%)		Platelet count decreased	4 (8%)	-	-	
Neutrophil count decreased	16 (31%)	4 (8%)	10 (19%)		3 (6%)	_	_	
Diarrhea	25 (48%)	2 (4%)	-	Diarrhad	3(070)	_		
Bruising	25 (48%)	-	-	Diarmea	Z (4%)	-	-	
Cough	20 (39%)	-	-	Infusion related reaction	1 (2%)	1 (2%)	-	
Infusion related reaction	17 (33%)	2 (4%)	1 (2%)	Rash	2 (4%)	-	-	
Nausea	19 (37%)	-	-	Skin infection	2 (4%)	-	-	
Anemia	19 (37%)	-	-	Fatique	1 (2%)	-	-	
Constipation	18 (35%)	-	-	Alkaline phosphatase increased	1 (2%)	_	-	
Nasal congestion	15 (29%)	-	-	Headache	1 (2%)	-	-	
Rash	11 (21%)	2 (4%)	-	Mucositis oral	1 (2%)			
Insomnia	12 (23%)	-	-		1 (270)	-	-	
Myalgia	12 (23%)	-	-	Atrial fibrillation	-	1 (2%)	-	
Gastroesophageal reflux disease	12 (23%)	-	-	Hypophosphatemia	1 (2%)	-	-	
Arthralgia	11 (21%)	-	-	Rash	1 (2%)	-	-	
Aspartate aminotransferase				Blood bilirubin increased	1 (2%)	-	-	
increased	10 (19%)	-	-	Heart failure	1 (2%)	-	-	
Dyspnea	10 (19%)	-	-	Purpura	1 (2%)	_	-	
Dizziness	9 (17%)	-	-		1 (270)			
Abdominal pain	9 (17%)	-	-					
Alkaline phosphatase increased	7 (14%)	1 (2%)	-	 No laboratory or clinical tumor lysis s 	syndrome (Howard o	criteria)		
Headache	7 (14%)	1 (2%)	-	 Additional Grade ≥3 AEs occurring in 1 patient each are as follows: One grade 5 AE occurred in a patient with intracranial hemorrhage on cycle 1 day 1. One grade 3 				
Postnasal drip	8 (15%)	-	-					
Sore throat	8 (15%)	-	-	febrile neutropenia. One Achilles ten	don partial tear.			
Hypocalcemia	8 (15%)	-	-					
Sinusitis	8 (15%)	-	-					

TN CLL - BOVen High Rates of uMRD4 at End of Treatment

* One patient, initially ascertained as uMRD in peripheral blood at 8 mo, had subsequent serial testing which confirmed MRD positivity at the threshold of detection, so the patient was excluded from the proportion of patients achieving uMRD

BeiGene's Interpretation of AMPLIFY Data Presentation

We believe in fixed treatment duration, but AMPLIFY did not meet expectations

The study was conducted in low-risk fit TN CLL patients excluding 17p del/TP53 and CIRS >6 vs FCR/BR1

• AV:

- With only 40 mo follow up time, modest risk reduction reported vs FCR/BR, a substandard control arm
- 36 mo PFS estimate show no evidence of benefit vs current SoC (BRUKINA and VO/VI) in cross-trial comparisons
 - Superiority even less noticeable after adjustment for COVID-19, with curves converging
 - Lower 36 mo PFS estimate is seen in uIGVH; numerically lower compared to SoC
- uMRD key secondary endpoint failed, favoring FCR/BR (51%) vs only 29% uMRD4 in AV (notably lower than those observed with VI and VO at similar timepoints in cross-trial comparisons).
- No claim of OS benefit can be made as analysis of key secondary endpoint failed
- Concerning number of deaths (all cause) over a short duration of follow up in a 1L fit population, a population that historically performed better than unfit
- AVO: Triplet is associated with major safety concerns with increased high-grade toxicity and death, with no benefit vs current Soc

Fixed treatment duration needs to be safe and efficacious in all patients with any disease risk status or patient characteristics and feasible to deliver at any clinical practice

¹ Brown et al, ASH, 2024

TN – Treatment NaïveMRD – MiniCLL – Chronic Lymphocytic LeukemiaAV – AcalalPFS – Progression Free SurvivalOS – OveraSoC – Standard of CareAVO- – AcaVO – Venetoclax/ ObinutuzumabVI – Venetoclax/ Ibrutinib

MRD – Minimal Residual Disease AV – Acalabrutinib/ Venetoclax OS – Overall Survival AVO- – Acalabrutinib/ Venetoclax/. Obinutuzumab

Cross Trial Comparison of SEQUOIA Study of 1L Unfit Vs. AMPLIFY Study of 1L Fit CLL

AMPLIFY COVID adjusted AV/AVO vs. FCR/BR*

¹ Brown et al, ASH, 2024

BRUKINSA (zanubrutinib)

Sonrotoclax

BGB-16673 (BTK CDAC)

Sonrotoclax, BCL2 Inhibitor With Best-in-Class Potential

More potent and specific BCL2i; unique PK profile	Clinical superiority observed to date	Broadest label of any BCL2 inhibitor planned	Remove existing barriers to BCL2i adoption	Expands Hematology leadership
• Greater potency vs. venetoclax in preclinical models; an important feature of a BCL2i	 1600+ patients clinical data reinforces pre-clinical and best-in-class potential Deep and durable 	 Ph 3 study ongoing in TN CLL with potential to be best in disease fixed duration combination and SOC globally 	Head-to-Head superiority against relevant gold standard comparators in all pivotal studies	 Protects and grows leadership in CLL as well as other B-cell malignancies
 Higher selectivity towards BCL2 believed to translate to improved safety Shorter half-life vs. 	responses seen in monotherapy and combos including combos with BRUKINSA; better data than venetoclax combos	 Ph2 studies with early registration potential in CLL, WM and MCL in post- BTKi setting 	 Differentiated ramp up in current studies could unlock wide use by all physicians 	 Expand into AML Potentially first approved BCL2i in MM with t(11;14), based on dex
venetoclax and no drug accumulation to improve tolerability	 Improved safety and feasibility 	 Two Ph3 studies in RR CLL and RR MCL starting in H1 2025 	 Further ramp-up optimization ongoing; aligned with health authorities based on no observed TLS 	doublet with potential earlier line studies of triplets with CD38 or proteasome inhibitor possible

TN – Treatment Naïve CLL - Chronic Lymphocytic Leukemia SoC – Standard of Care WM - Waldenström's Macroglobulinemia MCL - Mantle Cell Lymphoma R/R – Relapsed Refractory TLS – Tumor Lysis Syndrome AML - Acute Myeloid Leukemia MM - Multiple Myeloma

2024 ASH BeiGene Key Presentations Sonrotoclax

Торіс	Title	First author / significance	Status
BGB-11417-101 S+Z TN CLL	Sonrotoclax and zanubrutinib as frontline treatment for CLL demonstrates high MRD clearance rates with good tolerability: Updated data on the ongoing phase 1/1b study BGB- 11417-101	Jacob D. Soumerai Sonrotoclax + zanubrutinib has the potential for best in disease combination with impressive deep and durable responses. At a longer follow up (18.3mo), all patients responded to therapy and 90% achieved uMRD by week 48 while no clinical or lab TLS or other safety signals were observed. No progressions in 320mg cohort to date.	Oral 1012
CELESTIAL-TNCLL Trial in Progress (TiP)	CELESTIAL-TNCLL: An Ongoing, Open- Label, Multiregional, Phase 3 Study of Sonrotoclax (BGB-11417) + Zanubrutinib vs Venetoclax + Obinutuzumab for Treatment- Naive CLL	Piers E.M. Patten CELESTIAL-TNCLL (BGB-11417-301; NCT06073821) aims to assess and establish fixed duration sonrotoclax + zanubrutinib in TN CLL; Only ongoing study designed to show superiority vs. venetoclax +obinutuzumab	Poster 3257
BGB-11417-203 Trial in Progress (TiP)	BGB-11417-203, an Ongoing, Phase 2 Study of Sonrotoclax (BGB-11417), a Next- Generation BCL2 Inhibitor, in Patients With Waldenström Macroglobulinemia	Hui-Peng Lee Based on promising data from Ph1, BGB-11417-203 (NCT05952037) is an potentially registration enabling phase 2 study of sonrotoclax monotherapy, and sonrotoclax in combination with zanubrutinib, in patients with WM	Poster 1661

American Society of Hematology Helping hematologists conquer blood diseases worldwide

Sonrotoclax and Zanubrutinib as Frontline Treatment for CLL Demonstrates High MRD Clearance Rates with Good Tolerability: Data from an Ongoing Phase 1/1b Study BGB-11417-101

Jacob D. Soumerai,¹ Chan Y. Cheah,²⁻⁴ Mary Ann Anderson,^{5,6} Masa Lasica,⁷ Emma Verner,^{8,9} Stephen S. Opat,¹⁰ Shuo Ma,¹¹ Robert Weinkove,^{12,13} Raul Cordoba,¹⁴ Paolo Ghia,^{15,16} Sophie Leitch,¹⁷ David Westerman,^{18,19} Sheel Patel,²⁰ Yiqian Fang,²¹ Wei Ding,²⁰ Haiyi Guo,²¹ Constantine S. Tam²²

¹Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA; ²Sir Charles Gairdner Hospital, Nedlands, WA, Australia; ³Medical School, University of Western Australia, Crawley, WA, Australia; ⁴Linear Clinical Research, Nedlands, WA, Australia; ⁵Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; ⁶The Walter and Eliza Hall Institute, Melbourne, VIC, Australia; ⁷St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia; ⁸Concord Repatriation General Hospital, Concord, NSW, Australia; ⁹University of Sydney, Sydney, NSW, Australia; ¹⁰Lymphoma Research Group, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia; ¹¹Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; ¹²Te Rerenga Ora Blood and Cancer Centre, Te Whatu Ora Health New Zealand Capital Coast & Hutt Valley, Wellington, New Zealand; ¹³Cancer Immunotherapy Programme, Malaghan Institute of Medical Research, Wellington, New Zealand; ¹⁴Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain; ¹⁵Università Vita-Salute San Raffaele, Milano, Italy; ¹⁶IRCCS Ospedale San Raffaele, Milano, Italy; ¹⁷Te Whatu Ora Health New Zealand-Waitemata, Auckland, New Zealand; ¹⁸Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; ¹⁹University of Melbourne, Melbourne, VIC, Australia; ²⁰BeiGene USA, Inc, San Mateo, CA, USA; ²¹BeiGene (Shanghai) Co, Ltd, Shanghai, China; ²²Alfred Hospital and Monash University, Melbourne, VIC, Australia;

BGB-11417-101 - Sonrotoclax (NCT04277637) Study Design

- BGB-11417-101 is a global phase 1/1b study evaluating sonrotoclax as monotherapy, or in combination with zanubrutinib and/or obinutuzumab in patients with B-cell malignancies
- The study endpoints included safety per CTCAE v5.0, RP2D and efficacy
- Treatment consisted of 8-12 weeks of zanubrutinib lead-in (320 mg QD or 160 mg BID), then zanubrutinib + sonrotoclax until disease progression or intolerance

Presented at the 2024 66th ASH Annual Meeting and Exposition

CTCAE – Common Terminology Criteria for Adverse Events RP2D – Recommended Phase 2 Dose TN – Treatment Naïve CLL/SLL - Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma MCL - Mantle Cell Lymphoma

TN CLL - Sonrotoclax + Zanubrutinib Baseline Characteristics

	Sonro 160 mg + zanu	Sonro 320 mg + zanu	All Patients
Characteristics	(n=51)	(n=86)	(N=137)
Study follow-up, median (range), months	19.5 (12.6-33.3)	19.3 (0.4-29.7)	19.4 (0.4-33.3)
Age, median (range), years	63 (38-82)	61 (32-84)	62 (32-84)
≥65 years, n (%)	20 (39.2)	35 (40.7)	55 (40.1)
Male sex, n (%)	37 (72.5)	61 (70.9)	98 (71.5)
Disease type, n (%)			
CLL	48 (94.1)	82 (95.3)	130 (94.9)
SLL	3 (5.9)	4 (4.7)	7 (5.1)
Risk status, n/tested (%)			
del(17p)	5/45 (11.1)	6/77 (7.8)	11/122 (9.0)
TP53 muta	11/47 (23.4)	13/62 (21.0)	24/109 (22.0)
del(11q)	10/45 (22.2)	11/77 (14.3)	21/122 (17.2)
IGHV status, n/tested (%)			
Unmutated IGHV	32/47 (68.1)	32/60 (53.3)	64/107 (59.8)
High tumor bulk ^b at baseline, n/tested (%)	22/51 (43.1)	17/82 (20.7)	39/133 (29.3)

Data cutoff: August 23, 2024.

েবিটি53/mutations defined as >0.1% VAF. ^b Nodes ≥10 cm or nodes >5 cm and ALC >25×10⁹/L.

TN CLL - TEAEs Observed with Sonrotoclax+Zanubrutinib Were Mostly Low Grade and Transient

TEAEs in ≥10% of all patients

TN CLL - High and Early Blood uMRD4 with Sonrotoclax+Zanubrutinib Deepening Responses to Week 48 Across Risk Factor Groups

uMRD – Undetectable Minimal Residual Disease

AV - Acalabrutinib/ Venetoclax

AVO- – Acalabrutinib/ Venetoclax/. Obinutuzumab

a As measured by ERIC flow cytometry panel uMRD4 is defined as less than 1 CLL cell per 10,000 leukocytes (<10⁻⁴); b Number of weeks at target dose, following zanu monotherapy and sonro ramp-up to target dose

47

TN CLL - at Median Study Follow-Up of 19.4 Months No Progression Observed with Sonrotoclax 320 mg + Zanubrutinib

TN CLL - Sonrotoclax Authors' Conclusion:

With longer follow-up, S+Z continued to demonstrate encouraging safety and efficacy in TN CLL

- Sonrotoclax 160 or 320 mg in combination with zanubrutinib (320 mg) was **generally safe and well tolerated**, with a median relative dose intensity of 99%
 - No laboratory or clinical TLS occurred
 - Majority of TEAEs were low grade; low rates of GI TEAEs, predominantly grade 1, were observed
 - The most common grade ≥3 TEAE was neutropenia, which was mostly transitory
 - No fatal TEAEs, no complicated COVID-19 case or death
- Substantial efficacy was observed in this all-comer TN CLL/SLL population, including in patients with high-risk features
 - The sonrotoclax + zanubrutinib combination demonstrated a high response rate, including 100% ORR in the 320-mg cohort
 - High and early blood uMRD4 was seen by week 24 of combination therapy in both dose cohorts, with higher rates in the 320-mg cohort and further deepening by week 48 in both cohorts. No patient has progressed from uMRD4 to MRD4+
 - With median follow-up of 19.4 months, only 1 primary progression occurred in the 160-mg cohort that was an RT
- Sonrotoclax 320 mg in combination with zanubrutinib is being evaluated in patients with TN CLL in the phase 3 study, CELESTIAL-TNCLL (NCT06073821); enrollment is currently ongoing

Sonrotoclax CELESTIAL - TN CLL Is the ONLY Phase 3 Trial Designed to Show PFS Superiority of FD S+Z Over V+O Standard of Care

Sonrotoclax +Zanubrutinib has the potential for best-in-disease fixed duration therapy and expressed high interest for investigators and patients

COCLETY OF AN

Presented at the 2024 66th ASH Annual Meeting and Exposition

PFS – Progression Free Survival uMRD – Undetectable Minimal Residual Disease IGHV – Immunoglobulin Heavy Chain Variable Region

Delivering the potentially broadest label of any BCL2 inhibitor

Pivotal aim to demonstrate clinical superiority and differentiated profile removing barriers to use

	R/R MCL	Phase 2	Potentially pivotal. Monotherapy in patients with R/R MCL post-BTKi in the BGB-11417-201 trial
	R/R CLL/SLL	Phase 2	Potentially pivotal. Monotherapy in patients with R/R CLL/SLL post- BTKi in the BGB-11417-202 trial in China
	R/R WM	Phase 2	Potentially pivotal. Monotherapy in patients with R/R WM post-BTKi and post-chemoimmunotherapy in the BGB-11417-203 global trial
	TN CLL/SLL	Phase 2	Supporting registration Fixed duration combination with BRUKINSA in TN CLL/SLL patients vs. Brukinsa in the BGB-11417-204 global trial
BGB-11417	TN CLL/SLL	Phase 1/2	Ramp up optimization- Open label basket trial to explore additional ramp-ups for sonrotoclax in various indications BGB-11417-108
(BCL2	TN CLL/SLL	Phase 3	Pivotal. Fixed duration combination with BRUKINSA in TN CLL/SLL patients in the BGB-11417-301 global pivotal trial
inhibitor)	R/R MCL	Phase 3	Confirmatory Option. Combination with BRUKINSA in MCL patients
			Planned
	R/R CLL/SLL	Phase 3	Pivotal Option. Combination with CD20 in R/R CLL/SLL patients
:/R – Relapsed Refractory /ICL - Mantle Cell Lymphoma	ти wm	Phase 3	Confirmatory Option. Combination with BRUKINSA in TN WM patients
/SLL - Chronic Lymphocytic Leukemia/Smal Iphocytic Lymphoma I - Waldenström's Macroglobulinemia	1L AML	Phase 3	Pivotal Option. Combination with HMA in 1L Unfit AML patients
 Treatment Naive IL - Acute Myeloid Leukemia 	R/R MM	Phase 3	Pivotal Option. Combination with SOC agents in R/R MM patients

MM - Multiple Myeloma

BRUKINSA (zanubrutinib)

Sonrotoclax

BGB-16673 (BTK CDAC)

BTK CDAC (BGB-16673) is the Most Advanced Hematology Degrader in the Clinic with Potential to Become Both First and Best-in-class

Demonstrable potency of BeiGene's degrader platform	Differentiated BTK degrader	Striking Clinical Data	Robust clinical development plan	BeiGene's Leadership
 Novel MOA leads to degradation of target proteins Degradation of protein could be more potent than inhibitors Can overcome and/or obviate emergent resistance mutations CDAC platform optimized for safety and efficacy before candidate entered clinic IMID – Immune Mediated Inflammatory Disease CLL - Chronic Lymphocytic Leukemia RT – Richter Transformation iNHL – Indolent Non-Hodgkin Lymphoma WM - Waldenström's Macroglobulinemia RR – Relapsed Refractory 	 Preclinical data confirms: degradation of wild-type and mutant BTK^{1,2} blood brain barrier penetration Lack of IMiD activity; a safety advantage vs. other degraders Potential to displace BTKis with monotherapy or combinations 	 With 400+ patients treated in 14 countries, resounding clinical efficacy in variety of B cell malignancies including in BTKi-resistant CLL patients Rapid improvement of disease status; deep (CRs in CLL, RT, iNHL and VGPRs in WM) and durable responses observed in heavily pretreated patients including those with BTK mutations Safety profile appears comparable to 2nd gen BTKis and supports 	 R/R CLL; Phase 2 expansion with pivotal intent Strong data where significant unmet need exists. Fast-track designation Starting ph3 confirmatory in 2025 Other expansions planned Initiated a platform study; allows different novel combinations including with BeiGene's assets in multiple B-cell malignancies 	 Testament to BeiGene's strong expertise to develop and execute the optimal clinical development plan Further enhance leadership in CLL and improving patients' outcomes Launch opportunities in other B-cell malignancies with monotherapy and combinations: WM 1L FL MZL Aggressive NHL (DLBCL, MCL and RT)
MZL – Marginal Zone Lymphoma DLBCL – Diffuse Large B-cell Lymphoma MCL – Mantle Cell Lymphoma		earlier line use	Aggressive development plan for earlier lines including in CLL (1L, 2L)	

🔁 BeiGene

1. Feng X, et al. EHA 2023. Abstract P1239

2. Wang H, et al. EHA 2023. Abstract P1219

2024 ASH BeiGene Heme Presentations BTK CDAC (Clinical)

Торіс	Title	First author / significance	Status
CaDAnCe-101 CLL	Preliminary efficacy and safety of the Bruton tyrosine kinase degrader BGB-16673 in patients with relapsed or refractory chronic lymphocytic leukemia/small lymphocytic lymphoma: Results from the phase 1 CaDAnCe-101 study	Meghan C. Thompson Promising efficacy with a manageable safety profile in heavily pretreated RR CLL patients, many of whom have high risk features. Response rates higher and deeper than NX-5948: ORR-94% at 200 mg including 2 CR/CRis as well as CR in RT	Oral 885
<u>CaDAnCe-101-WM</u>	Preliminary efficacy and safety of the Bruton tyrosine kinase degrader BGB-16673 in patients with relapsed or refractory Waldenström macroglobulinemia: Results from the phase 1 CaDAnCe-101 study	John F. Seymour Rapid responses with 26% of patients achieving VGPR, responses observed in traditionally high-risk patients Rapid decline in IgM (a PD marker) has a favorable slope to that of NX-5948	Oral 860
CaDAnCe-101 NHL	Preliminary efficacy and safety of the Bruton tyrosine kinase degrader BGB-16673 in patients with relapsed or refractory (R/R) indolent NHL: Results from the phase 1 CaDAnCe-101 study	Constantine S. Tam Early data showing meaningful efficacy in FL and MZL patients including 1 CR each BTK-CDAC might be more potent in some diseases compared to BTKis	Poster 1649

American Society of Hematology Helping hematologists conquer blood diseases worldwide

Preliminary Efficacy and Safety of the Bruton Tyrosine Kinase Degrader BGB-16673 in Patients With Relapsed or Refractory Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma: Results From the Phase 1 CaDAnCe-101 Study

Meghan C. Thompson,¹ Ricardo D. Parrondo,² Anna Maria Frustaci,³ John N. Allan,⁴ Paolo Ghia,^{5,6} Irina Mocanu,⁷ Constantine S. Tam,⁸ Judith Trotman,⁹ Inhye E. Ahn,¹⁰ Stephan Stilgenbauer,¹¹ Lydia Scarfò,^{5,6} Xiangmei Chen,¹² Kunthel By,¹³ Shannon Fabre,¹³ Daniel Persky,¹³ Amit Agarwal,¹³ John F. Seymour¹⁴

¹Memorial Sloan Kettering Cancer Center, New York, NY, USA; ²Mayo Clinic - Jacksonville, Jacksonville, FL, USA; ³ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy; ⁴Weill Cornell Medicine, New York, NY, USA; ⁵Università Vita-Salute San Raffaele, Milano, Italy; ⁶IRCCS Ospedale San Raffaele, Milano, Italy; ⁷Institute of Oncology, ARENSIA Exploratory Medicine, Düsseldorf, Germany; ⁸Alfred Hospital and Monash University, Melbourne, VIC, Australia; ⁹Concord Repatriation General Hospital, University of Sydney, Concord, NSW, Australia; ¹⁰Dana-Farber Cancer Institute, Boston, MA, USA; ¹¹Ulm University, Ulm, Germany; ¹²BeiGene (Shanghai) Co, Ltd, Shanghai, China; ¹³BeiGene USA, Inc, San Mateo, CA, USA; ¹⁴Peter MacCallum Cancer Centre, Royal Melbourne Hospital, and University of Melbourne, VIC, Australia

BTK CDAC (BGB-16673) CaDAnCe-101: Phase 1/2, Open-Label, Dose-Escalation/ Expansion Study in R/R B-Cell Malignancies

^a Data from gray portions of figure are not included in this presentation. ^b Six dose levels (50-600 mg orally QD). ^c Safety was assessed according to CTCAE v5.0 in all patients and iwCLL hematologic toxicity criteria in patients with CLL; DLTs were assessed during the first 4 weeks of part 1a. d Response was assessed per iwCLL 2018 criteria after 12 weeks for OCIETY OF GCB, germinal center B-cell; RT, Richter transformation.

Presented at the 2024 66th ASH Annual Meeting and Exposition

CLL/SLL - Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma RP2D – Recommended Phase 2 Dose MZL – Marginal Zone Lymphoma FL – Follicular Lymphoma MCL – Mantle Cell Lymphoma

WM - Waldenström's Macroglobulinemia

DLBCL – Diffuse Large B-cell Lymphoma

RT – Richter Transformation

RR – Relapsed Refractory

🕱 BeiGene

56

R/R CLL - BTK CDAC (BGB-16673) Baseline Patient Characteristics Heavily pre-treated, with high-risk R/R CLL features BTK

	Total (N=60)
Age, median (range), years	70 (50-91)
Male, n (%)	39 (65.0)
ECOG PS, n (%)	
0	34 (56.7)
1	25 (41.7)
2	1 (1.7)
CLL/SLL risk characteristics at study entry	, n/N (%)
Binet stage C	27/56 (48.2)
Unmutated IGHV	38/46 (82.6)
del(17p) or TP53 mutation	40/60 (66.7)
Complex karyotype (≥3 abnormalities)	19/38 (50.0)

Data cutoff: September 2, 2024. cBTK, covalent BTK; ncBTK, noncovalent BTK.

-	Total (N=60)
Mutation status, n/N (%)	
BTK mutation present	18/54 (33.3)
PLCG2 mutation present	8/54 (14.8)
No. of prior lines of therapy, median (range)	4 (2-10)
Prior therapy, n (%)	
Chemotherapy	43 (71.7)
cBTK inhibitor	56 (93.3)
ncBTK inhibitor	13 (21.7)
BCL2 inhibitor	50 (83.3)
cBTK + BCL2 inhibitors	38 (63.3)
cBTK + ncBTK + BCL2 inhibitors	12 (20.0)
Discontinued prior BTK inhibitor due to PD, n/N (%)	50/56 (89.3)

R/R CLL - BTK CDAC (BGB-16673) Safety Summary and All-Grade TEAEs ≥10% for All Patients

No atrial fibrillation

- Amylase/lipase elevations were lab findings and transient, mostly occurring during the first 1-3 cycles of treatment, with no clinical pancreatitis
- Major hemorrhage^a: 3.3% (n=2; grade 1 subarachnoid hemorrhage [n=1] and grade 3 subdural hemorrhage [n=1])
- Febrile neutropenia: 1.7% (n=1; in the context of COVID-19 pneumonia and norovirus diarrhea)

^a Grade ≥3, serious, or any central nervous system bleeding. ^bNeutropenia combines preferred terms *neutrophil count decreased* and *neutropenia*. ^c All events were lab findings and were transient, mostly occurring during the first 1-3 cycles of treatment, with no clinical pancreatitis. ^d Thrombocytopenia combines preferred terms *platelet count decreased* and *thrombocytopenia*.

	Total (N=60)		
Patients, n (%)	All Grade	Grade ≥3	
Fatigue	18 (30.0)	1 (1.7)	
Contusion (bruising)	17 (28.3)	0	
Neutropenia ^b	15 (25.0)	13 (21.7)	
Diarrhea	14 (23.3)	1 (1.7)	
Anemia	11 (18.3)	0	
Lipase increased ^c	10 (16.7)	2 (3.3)	
Cough	9 (15.0)	0	
Pneumonia	8 (13.3)	5 (8.3)	
Pyrexia	8 (13.3)	0	
Arthralgia	7 (11.7)	0	
COVID-19	7 (11.7)	0	
Dyspnea	7 (11.7)	0	
Peripheral edema	7 (11.7)	0	
Thrombocytopenia ^d	7 (11.7)	2 (3.3)	
Amylase increased ^c	6 (10.0)	0	
Nausea	6 (10.0)	0	
Sinusitis	6 (10.0)	0	

R/R CLL - BTK CDAC (BGB-16673) High Overall Response Rates and CRs; Including Patients with High-Risk Features

High risk features

- Double exposure (previously received cBTKi + BCL2 inhibitors): 78.6% (33/42)
- Triple exposure (previously received cBTKi, ncBTKi, + BCL2 inhibitors): 58.3% (7/12)
- del(17p) or *TP53* mutation: 74.2% (23/31)
- Complex karyotype: 73.3% (11/15)
- BTK mutations: 62.5% (10/16)
- PLCG2 mutations: 66.7% (4/6)

^a Efficacy-evaluable population

^b Includes best overall responses of PR-L or better

^c Includes best overall responses of SD or better

^d In patients with a best overall response of PR-L or better CRi, with incomplete marrow recovery; PR-L, partial response with lymphocytosis

	50 mg (n=1)	100 mg (n=5)	200 mg (n=16)	350 mg (n=15)	500 mg (n=12)	Total ^a (N=49)
Best overall response, n (%)						
CR/CRi	0	1 (20.0)	1 (6.3)	0	0	2 (4.1)
PR	1 (100)	3 (60.0)	12 (75.0)	10 (66.7)	7 (58.3)	33 (67.3)
PR-L	0	0	2 (12.5)	0	1 (8.3)	3 (6.1)
SD	0	1 (20.0)	0	1 (6.7)	4 (33.3)	6 (12.2)
PD	0	0	1 (6.3)	1 (6.7)	0	2 (4.1)
Discontinued prior to first assessment	0	0	0	3 (20.0)	0	3 (6.1)
ORR, n (%) ^b	1 (100)	4 (80.0)	15 (93.8)	10 (66.7)	8 (66.7)	38 (77.6)
Disease control rate, n (%) ^c	1 (100)	5 (100)	15 (93.8)	11 (73.3)	12 (100)	44 (89.8)
Time to first response, median (range), months ^d	2.9 (2.9-2.9)	4.2 (2.8-6.2)	2.9 (2.6-8.3)	2.8 (2.6-8.3)	2.8 (2.6-8.3)	2.8 (2.6-8.3)
Duration of exposure, median (range), months	26.4 (26.4-26.4)	13.8 (13.6-18.6)	10.6 (2.9-18.9)	10.3 (0.2-16.8)	9.3 (6.8-15.4)	10.4 (0.2-26.4)

R/R CLL - BTK CDAC (BGB-16673) Durable and Sustained Responses; CDAC PFS Estimates Favorable to Pirtobrutinib

1. Sharnan J. et al ASH 2024

	CaDAnCe-101	BRUIN 321
Median prior lines of therapies	4	3
BTKi+BCL2i exposed	63%	50%
Prior BTKi discontinuation due to PD	89%	71%

R/R RT- BTK CDAC (BGB-16673) Promising Activity Also Seen in Patients with Richter Transformation

- Safety-evaluable patients, n=14; efficacy-evaluable patients, n=12
- Median age (range): 64 years (47-80 years)
- Median prior number of therapies for RT (range): 2 (1-9)
- All patients previously received a cBTKi; 12/14 had anthracyclines
- ORR: 58.3% (7/12), CR: 8.3% (1/12)
- 5 of 7 (71.4%) patients with response on treatment for >6 months

Data cutoff: September 2, 2024 cBTKi, covalent BTK inhibitor; NE, not evaluable

OCIETY OA

Treatment duration, weeks

R/R CLL - BTK CDAC (BGB-16673) Authors' Conclusions: CaDAnCe-101

BTK CDAC (BGB-16673) was well tolerated in a Ph1 study in pre-treated R/R CLL/SLL patients

- In phase 1 of CaDAnCe-101, the novel BTK degrader BGB-16673 was safe and well tolerated in this heavily
 pretreated population of patients with R/R CLL/SLL
 - One DLT; MTD not reached
 - No atrial fibrillation
- Significant antitumor activity, including in patients with BTK inhibitor-resistant mutations and those previously exposed to cBTK, ncBTK, and BCL2 inhibitors
 - ORR 77.6% (38/49) and CR/CRi 4.1% (2/49); ORR 93.8% at 200 mg
 - Median time to first response: 2.8 months
 - Deepening of response observed over time (median 11.0-month follow-up)
- Promising activity in RT: ORR: 58.3% (7/12), CR: 8.3% (1/12)
- A phase 2 cohort of patients with CLL/SLL exposed to both a BTK inhibitor and BCL2 inhibitor is enrolling

American Society of Hematology Helping hematologists conquer blood diseases worldwide

Preliminary Efficacy and Safety of the Bruton Tyrosine Kinase Degrader BGB-16673 in Patients With Relapsed or Refractory Waldenström Macroglobulinemia: Results From the Phase 1 CaDAnCe-101 Study

John F. Seymour,¹ Constantine S. Tam,² Chan Y. Cheah,³⁻⁵ Ricardo D. Parrondo,⁶ John N. Allan,⁷ Judith Trotman,⁸ Ranjana Advani,⁹ Herbert Eradat,¹⁰ Pier Luigi Zinzani,¹¹ Masa Lasica,¹² Steven P. Treon,¹³ Xiangmei Chen,¹⁴ Kunthel By,¹⁵ Shannon Fabre,¹⁵ Daniel Persky,¹⁵ Amit Agarwal,¹⁵ Anna Maria Frustaci¹⁶

¹Peter MacCallum Cancer Centre, Royal Melbourne Hospital, and University of Melbourne, Melbourne, VIC, Australia; ²Alfred Hospital and Monash University, Melbourne, VIC, Australia; ³Sir Charles Gairdner Hospital, Nedlands, WA, Australia; ⁴Medical School, University of Western Australia, Crawley, WA, Australia; ⁵Linear Clinical Research, Nedlands, WA, Australia; ⁶Mayo Clinic - Jacksonville, Jacksonville, FL, USA; ⁷Weill Cornell Medicine, New York, NY, USA; ⁸Concord Repatriation General Hospital, University of Sydney, Concord, NSW, Australia; ⁹Stanford Cancer Institute, Stanford, CA, USA; ¹⁰David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; ¹¹Institute of Hematology "Seràgnoli", University of Bologna, Bologna, Italy; ¹²St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia; ¹³Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; ¹⁴BeiGene (Shanghai) Co, Ltd, Shanghai, China; ¹⁵BeiGene USA, Inc, San Mateo, CA, USA; ¹⁶ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy

R/R WM BTK CDAC (BGB-16673) Patient Baseline Characteristics

Heavily pre-treated with high rate of WM high risk mutations

	Total (N=27)
Age, median (range), years	73.0 (56-81)
Male, n (%)	15 (55.6)
ECOG PS, n (%)	
0	14 (51.9)
1	12 (44.4)
2	1 (3.7)
Hemoglobin, median (range), g/dL	10.3 (6.0-13.5)
Neutrophils, median (range), 10 ⁹ /L	2.71 (0.21-7.43)
Platelets, median (range), 10 ⁹ /L	157 (14-455)
Mutation status, n/N (%) ^a	
MYD88 mutation present	24/26 (92.3)
CXCR4 mutation present	12/25 (48.0)
BTK mutation present	11/25 (44.0)
TP53 mutation present	13/25 (52.0)

	Total (N=27)
lgM, median (range), g/L	37.4 (2.8-74.4)
No. of prior lines of therapy, median (range)	3.0 (2-11)
Prior therapy, n (%)	
cBTK inhibitor	27 (100)
Chemotherapy	25 (92.6)
Proteasome inhibitor	9 (33.3)
BCL2 inhibitor	5 (18.5)
ncBTK inhibitor ^b	4 (14.8)
Discontinued prior BTK inhibitor due to PD, n (%)	21 (77.8)

Data cutoff: September 2, 2024

^a Confirmed by central laboratory ^b All 4 patients with ncBTK inhibitor exposure were exposed to a cBTK inhibitor cBTK, covalent BTK; IgM, immunoglobulin M; ncBTK, noncovalent BTK.

R/R WM - BTK CDAC (BGB-16673) High Overall Response Rates and VGPRs; Including Patients with High-Risk Features

- Responses were observed at the lowest dose (100 mg; 7/9) and in patients with prior cBTK inhibitor (22/27) or ncBTK inhibitor (4/4)
- Responses also occurred in patients with or without mutations in:
 - BTK (with, 10/11 [90.9%]; without, 11/14 [78.6%]; unknown, 1/2 [50.0%])
 - MYD88 (with, 20/24 [83.3%]; without, 1/2 [50.0%]; unknown, 1/1 [100%])
 - CXCR4 (with, 11/12 [91.7%]; without, 10/13 [76.9%]; unknown, 1/2 [50.0%])
 - TP53 (with, 12/13 [92.3%]; without 9/12 [75.0%]; unknown 1/2 [50.0%])

^a Efficacy-evaluable population

^b Includes best overall responses of MR or better

^c Includes best overall response of PR or VGPR ^d Includes best overall responses of SD or better.

In patients with a best overall response better than SD.

ncBTK, covalent BTK; IgM, immunoglobulin M; MR, minor response; ncBTK, noncovalent BTK; VGPR, very good partial response.

ICETK, noncovalent BTK, VGPR, very good partial response.

, OCI	ETYOR
ANS	
ERIC	
The way	an artic

	Total ^a (N=27)				
Best overall response, n (%)					
VGPR	7 (25.9)				
PR	13 (48.1)				
MR	2 (7.4)				
SD	3 (11.1)				
Not evaluable	1 (3.7)				
Discontinued prior to first assessment	1 (3.7)				
ORR, n (%) ^b	22 (81.5)				
Major response rate, n (%) ^c	20 (74.1)				
Disease control rate, n (%) ^d	25 (93.0)				
Follow-up time, median (range), months	5.0 (0.8-24.6)				
Time to first response, median (range), months ^e	1.0 (0.9-3.7)				

R/R WM – BTK CDAC (BGB-16673) Demonstrated Rapid and Steeper Reductions in IgM in Patients Compared to Nurix's NX-5948

Nurix NX-5948 deepest reductions occurred at highest doses

IgM, immunoglobulin M.

American Society of Hematology Helping hematologists conquer blood diseases worldwide

Preliminary Efficacy and Safety of the Bruton Tyrosine Kinase Degrader BGB-16673 in Patients With Relapsed or Refractory Indolent NHL: Results From the Phase 1 CaDAnCe-101 Study

Constantine S. Tam,¹ Anna Maria Frustaci,² Fontanet Bijou,³ Pier Luigi Zinzani,⁴ John F. Seymour,⁵ Masa Lasica,⁶ Herbert Eradat,⁷ Victor T.G. Lin,⁸ Maan Alwan,⁹ Irina Mocanu,¹⁰ Xiangmei Chen,¹¹ Kunthel By,¹² Shannon Fabre,¹² Daniel Persky,¹² Amit Agarwal,¹² Chan Y. Cheah¹³⁻¹⁵

¹Alfred Hospital and Monash University, Melbourne, VIC, Australia; ²ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy; ³Institut Bergonié, Bordeaux, France; ⁴Institute of Hematology "Seràgnoli", University of Bologna, Bologna, Italy; ⁵Peter MacCallum Cancer Centre, Royal Melbourne Hospital, and University of Melbourne, Melbourne, VIC, Australia; ⁶St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia; ⁷David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; ⁸Mary Bird Perkins Cancer Center, Baton Rouge, LA, USA; ⁹Perth Blood Institute, West Perth, WA, Australia; ¹⁰Institute of Oncology, ARENSIA Exploratory Medicine, Düsseldorf, Germany; ¹¹BeiGene (Shanghai) Co, Ltd, Shanghai, China; ¹²BeiGene USA, Inc, San Mateo, CA, USA; ¹³Sir Charles Gairdner Hospital, Nedlands, WA, Australia; ¹⁴Medical School, University of Western Australia, Crawley, WA, Australia; ¹⁵Linear Clinical Research, Nedlands, WA, Australia

R/R FL and MZL - BTK CDAC (BGB-16673) High Rates of Responses Including CRs in Both Histologies

Responses seen in patients with prior covalent BTK inhibitor (7/12 [58%] in MZL) and a noncovalent BTK inhibitor (1/1 in FL)

^a Three patients were not yet response evaluable
 ^b Includes best overall responses of PR or CR
 ^c Includes best overall responses of SD or better
 ^d For all enrolled patients: FL, n=8; MZL, n=17
 ^e In patients with a best overall response better than SD.

	FL (n=8)	MZL ^a (n=14)
Best overall response, n (%)		
CR	1 (12.5)	1 (7.1)
PR	3 (37.5)	8 (57.1)
SD	2 (25.0)	2 (14.3)
PD	2 (25.0)	1 (7.1)
ORR, n (%) ^b	4 (50.0)	9 (64.3)
Disease control rate, n (%) ^c	6 (75.0)	11 (78.6)
Follow-up time, median, months ^d	14.4 (3.3-24.0)	4.8 (1.9-19.1)
Time to first response, median (range), monthse	2.7 (2.6-3.3)	2.8 (2.5-9.9)

R/R FL and MZL - BTK CDAC Author's Conclusions:

BTK CDAC (BGB-16673) continues to be safe, tolerable with durable activity in FL and MZL patients

- Updated data from this ongoing study show that the novel BTK degrader BGB-16673 was safe and tolerable in heavily pretreated patients with FL or MZL; no DLTs occurred and MTD was not reached with dose escalation up to 500 mg
 - Discontinuations due to TEAEs were low; 1 patient discontinued in the context of PD
- BGB-16673 had durable antitumor activity with a short time to response in heavily pretreated patients with NHL, including those with BTK inhibitor–exposed disease
 - ORR was 50.0% in FL and 64.3% in MZL
 - Two patients achieved CR (FL, n=1; MZL, n=1)
- These data support further investigation of BGB-16673 clinical activity in patients with NHL; enrollment in CaDAnCe-101 continues for FL and MZL

A H2H Study of BTK CDAC (BGB-16673) vs. Pirtobrutinib Is Planned Based on Data From CaDAnCe-101 and BRUIN 321

BTK CDAC (BGB-16673) Broadening Development Program

MCL - Mantle Cell Lymphoma WM - Waldenström's Macroglobulinemia R/R – Relapsed Refractory CLL/SLL - Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma

BGB-16673

CDP

CaDAnCe-101	Phase 1/2	Global	Monotherapy in patients with B-cell malignancies. BTK naive cohort for earlier lines. Multiple expansion cohorts including MCL and WM
CaDAnCe-101 RR CLL	Phase 2	Global	Potentially pivotal. Monotherapy in patients with R/R CLL/SLL post- BTKi and post-BCL2i
Platform Study	Phase 1	Global	Novel chemo-free combinations in patients with B-Cell malignancies, including sonrotoclax, zanubrutinib and CD20xCD3 Bispecific
			Planned
RR CLL	Phase 3	Global	Pivotal starting in 1H 2025. Monotherapy in patients with R/R CLL/SLL
RR CLL	Phase 3	Global	Head-to-head study versus pirtobrutinb planned for 2025

BeiGene Today and in the Future: Our Portfolio will Grow Existing Leadership in CLL, with Options Across Entire Patient Journey

BeiGene wholly owned molecules (approved or in development) will create treatment options available to all Patients and HCPs as monotherapy or best-in-disease combinations with our assets

Accelerating Development of Differentiated Assets as a Leader in Broad Range of Hematologic Malignancies

CLOSING REMARKS

John V. Oyler

Co-Founder, Chairman and CEO

Foundation Set for Hematology Franchise Leadership and Exciting Progress in Early Solid Tumor Portfolio

Sustainable Le	Early Solid Tumor Portfolio		
Investor Question & Concern	BeiGene's Perspective	Major Progress	
 How will uptake of fixed duration regimens in the US affect the \$12B+ CLL market? Potential approval of A+V in the US would represent first all oral fixed duration regimen for TN CLL and could erode share from single agent BTKi Where will Pirtobrutinib ultimately fall in the CLL treatment paradigm? Non-covalent BTK inhibitor could displace covalent inhibitors in TN CLL 	 AMPLIFY might represent a potential option in the treatment of CLL patients, but is not best solution for patients Numerically worse 36-month PFS than SOC Meaningfully lower uMRD rates than FCR/BR Early data requiring more follow up, which may deteriorate further Z+S in Phase 3 for TN CLL has potential to be best in disease combination Pirtobrutinib mPFS deteriorated BTK CDAC data impressive: head-to-head trial vs Pirtobrutinib BTK degradation offers mechanistic advantages over non-covalent BTK inhibition 	 Compelling early solid tumor pipeline including: CDK4i MAT2Ai CDK2i B7H4 ADC Pan-KRASi CEA ADC EGFR CDAC FGFR2b ADC PRMT5i Numerous readouts in the next 12 months Combination and potential for franchise building in lung, breast and GI cancer e.g. CDK4 inhibitor program 	
3 Even though Sonro and BTK CDAC data is compelling, will IRA or patent expiry for Acala and Ven create pricing pressure for Brukinsa, Sonro, and BTK CDAC? Imbruvica and Calquence future price deterioration could negatively impact the CLL market and Brukinsa, Sonro and BTK CDAC	 a Underwhelming AMPLIFY data provides low hurdles to show separation for Brukinsa, Sonro, BTK CDAC from Acala or Ven b Wholly-owned, unique to BeiGene combinations of Brukinsa, Sonro and BTK CDAC provide additional mitigation 	 Encouraging Phase 1A data showing promising safety and tolerability for CDK4 inhibitor in HR+/HER2- Breast Cancer We enrolled 120+ patients in less than a year Phase 3 planning underway 	

QUESTIONS & ANSWERS

BeiGene

Lai Wang Global Head of R&D Mark Lanasa Chief Medical Officer

Solid Tumors

Mehrdad Mobasher Chief Medical Officer Hematology John V. Oyler Co-Founder, Chairman and CEO Aaron Rosenberg Chief Financial Officer

BeiGene

Appendix

Timelines of ALPINE, SEQUOIA and AMPLIFY studies

Trial durations from clinicaltrials.gov BeiGene milestones from internal data Acalabrutinib milestones from AstraZeneca website

Key Patient Characteristics, mFU, uMRD, PFS, and Death

	AMPLIFY (Phase 3)			CRISTALLO (Phase 3)		CLL13 (Phase 3)	
	A+V N=291	A+V+O N=286	BR/FCR N=290	V+O N=80	BR/FCR N=86	V+O N=229	BR/FCR N=229
Age median (range)	61 (31-84)	61 (29-81)	61 (26-86)	62 (40-83)	61 (36-77)	62 (31-83)	61 (29-84)
del(17p)+ or TP53, n (%)	Excluded			Excluded		Excluded	
IGHV UNmut, n (%)	57.4%	59.1%	59.3%	43.8%	44.2%	57.0%	57.2%
Median Follow Up, mos	41			32		38.8	
uMRD4 at EOT (PB <i>via flow cytometry</i>)	34.4%	67.1%	45.5%	81.3%	60.5%	86.5% (mon 15)	52.0% (mon 15)
PFS	36 mo: 76.5% (HR 0.65 vs CIT)	36 mo: 83.1% (HR 0.42 vs CIT)	36 Meng: 66.5%	24 mo: 95.7%	24 mo: 90.4%	36 mo: 87.7%	36 mo: 75.5%
Death, n	18 COVID: 10	37 COVID: 25	40 COVID: 21	NR COVID: 2	NR COVID: 2	11 COVID: 3	12 COVID: 2